1,721 research outputs found

    On the equality of Hausdorff and box counting dimensions

    Full text link
    By viewing the covers of a fractal as a statistical mechanical system, the exact capacity of a multifractal is computed. The procedure can be extended to any multifractal described by a scaling function to show why the capacity and Hausdorff dimension are expected to be equal.Comment: CYCLER Paper 93mar001 Latex file with 3 PostScript figures (needs psfig.sty

    A Time-Space Tradeoff for Triangulations of Points in the Plane

    Get PDF
    In this paper, we consider time-space trade-offs for reporting a triangulation of points in the plane. The goal is to minimize the amount of working space while keeping the total running time small. We present the first multi-pass algorithm on the problem that returns the edges of a triangulation with their adjacency information. This even improves the previously best known random-access algorithm

    Maximum Matching in Turnstile Streams

    Get PDF
    We consider the unweighted bipartite maximum matching problem in the one-pass turnstile streaming model where the input stream consists of edge insertions and deletions. In the insertion-only model, a one-pass 22-approximation streaming algorithm can be easily obtained with space O(nlog⁥n)O(n \log n), where nn denotes the number of vertices of the input graph. We show that no such result is possible if edge deletions are allowed, even if space O(n3/2−ή)O(n^{3/2-\delta}) is granted, for every ÎŽ>0\delta > 0. Specifically, for every 0≀ϔ≀10 \le \epsilon \le 1, we show that in the one-pass turnstile streaming model, in order to compute a O(nÏ”)O(n^{\epsilon})-approximation, space Ω(n3/2−4Ï”)\Omega(n^{3/2 - 4\epsilon}) is required for constant error randomized algorithms, and, up to logarithmic factors, space O(n2−2Ï”)O( n^{2-2\epsilon} ) is sufficient. Our lower bound result is proved in the simultaneous message model of communication and may be of independent interest

    Log-periodic corrections to scaling: exact results for aperiodic Ising quantum chains

    Full text link
    Log-periodic amplitudes of the surface magnetization are calculated analytically for two Ising quantum chains with aperiodic modulations of the couplings. The oscillating behaviour is linked to the discrete scale invariance of the perturbations. For the Fredholm sequence, the aperiodic modulation is marginal and the amplitudes are obtained as functions of the deviation from the critical point. For the other sequence, the perturbation is relevant and the critical surface magnetization is studied.Comment: 12 pages, TeX file, epsf, iopppt.tex, xref.tex which are joined. 4 postcript figure

    Born-Regulated Gravity in Four Dimensions

    Get PDF
    Previous work involving Born-regulated gravity theories in two dimensions is extended to four dimensions. The action we consider has two dimensionful parameters. Black hole solutions are studied for typical values of these parameters. For masses above a critical value determined in terms of these parameters, the event horizon persists. For masses below this critical value, the event horizon disappears, leaving a ``bare mass'', though of course no singularity.Comment: LaTeX, 15 pages, 2 figure

    Binary Tree Approach to Scaling in Unimodal Maps

    Full text link
    Ge, Rusjan, and Zweifel (J. Stat. Phys. 59, 1265 (1990)) introduced a binary tree which represents all the periodic windows in the chaotic regime of iterated one-dimensional unimodal maps. We consider the scaling behavior in a modified tree which takes into account the self-similarity of the window structure. A non-universal geometric convergence of the associated superstable parameter values towards a Misiurewicz point is observed for almost all binary sequences with periodic tails. There are an infinite number of exceptional sequences, however, which lead to superexponential scaling. The origin of such sequences is explained.Comment: 25 pages, plain Te

    Submodular Maximization Meets Streaming: Matchings, Matroids, and More

    Full text link
    We study the problem of finding a maximum matching in a graph given by an input stream listing its edges in some arbitrary order, where the quantity to be maximized is given by a monotone submodular function on subsets of edges. This problem, which we call maximum submodular-function matching (MSM), is a natural generalization of maximum weight matching (MWM), which is in turn a generalization of maximum cardinality matching (MCM). We give two incomparable algorithms for this problem with space usage falling in the semi-streaming range---they store only O(n)O(n) edges, using O(nlog⁥n)O(n\log n) working memory---that achieve approximation ratios of 7.757.75 in a single pass and (3+Ï”)(3+\epsilon) in O(ϔ−3)O(\epsilon^{-3}) passes respectively. The operations of these algorithms mimic those of Zelke's and McGregor's respective algorithms for MWM; the novelty lies in the analysis for the MSM setting. In fact we identify a general framework for MWM algorithms that allows this kind of adaptation to the broader setting of MSM. In the sequel, we give generalizations of these results where the maximization is over "independent sets" in a very general sense. This generalization captures hypermatchings in hypergraphs as well as independence in the intersection of multiple matroids.Comment: 18 page

    Buyback Problem - Approximate matroid intersection with cancellation costs

    Full text link
    In the buyback problem, an algorithm observes a sequence of bids and must decide whether to accept each bid at the moment it arrives, subject to some constraints on the set of accepted bids. Decisions to reject bids are irrevocable, whereas decisions to accept bids may be canceled at a cost that is a fixed fraction of the bid value. Previous to our work, deterministic and randomized algorithms were known when the constraint is a matroid constraint. We extend this and give a deterministic algorithm for the case when the constraint is an intersection of kk matroid constraints. We further prove a matching lower bound on the competitive ratio for this problem and extend our results to arbitrary downward closed set systems. This problem has applications to banner advertisement, semi-streaming, routing, load balancing and other problems where preemption or cancellation of previous allocations is allowed

    Are Financial Crashes Predictable?

    Full text link
    We critically review recent claims that financial crashes can be predicted using the idea of log-periodic oscillations or by other methods inspired by the physics of critical phenomena. In particular, the October 1997 `correction' does not appear to be the accumulation point of a geometric series of local minima.Comment: LaTeX, 5 pages + 1 postscript figur

    Interval Selection in the Streaming Model

    Full text link
    A set of intervals is independent when the intervals are pairwise disjoint. In the interval selection problem we are given a set I\mathbb{I} of intervals and we want to find an independent subset of intervals of largest cardinality. Let α(I)\alpha(\mathbb{I}) denote the cardinality of an optimal solution. We discuss the estimation of α(I)\alpha(\mathbb{I}) in the streaming model, where we only have one-time, sequential access to the input intervals, the endpoints of the intervals lie in {1,...,n}\{1,...,n \}, and the amount of the memory is constrained. For intervals of different sizes, we provide an algorithm in the data stream model that computes an estimate α^\hat\alpha of α(I)\alpha(\mathbb{I}) that, with probability at least 2/32/3, satisfies 12(1−Δ)α(I)≀α^≀α(I)\tfrac 12(1-\varepsilon) \alpha(\mathbb{I}) \le \hat\alpha \le \alpha(\mathbb{I}). For same-length intervals, we provide another algorithm in the data stream model that computes an estimate α^\hat\alpha of α(I)\alpha(\mathbb{I}) that, with probability at least 2/32/3, satisfies 23(1−Δ)α(I)≀α^≀α(I)\tfrac 23(1-\varepsilon) \alpha(\mathbb{I}) \le \hat\alpha \le \alpha(\mathbb{I}). The space used by our algorithms is bounded by a polynomial in Δ−1\varepsilon^{-1} and log⁥n\log n. We also show that no better estimations can be achieved using o(n)o(n) bits of storage. We also develop new, approximate solutions to the interval selection problem, where we want to report a feasible solution, that use O(α(I))O(\alpha(\mathbb{I})) space. Our algorithms for the interval selection problem match the optimal results by Emek, Halld{\'o}rsson and Ros{\'e}n [Space-Constrained Interval Selection, ICALP 2012], but are much simpler.Comment: Minor correction
    • 

    corecore